IGF2 mRNA binding protein-2 is a tumor promoter that drives cancer proliferation through its client mRNAs IGF2 and HMGA1

نویسندگان

  • Ning Dai
  • Fei Ji
  • Jason Wright
  • Liliana Minichiello
  • Ruslan Sadreyev
  • Joseph Avruch
چکیده

The gene encoding the Insulin-like Growth Factor 2 mRNA binding protein 2/IMP2 is amplified and overexpressed in many human cancers, accompanied by a poorer prognosis. Mice lacking IMP2 exhibit a longer lifespan and a reduced tumor burden at old age. Herein we show in a diverse array of human cancer cells that IMP2 overexpression stimulates and IMP2 elimination diminishes proliferation by 50-80%. In addition to its known ability to promote the abundance of Insulin-like Growth Factor 2/IGF2, we find that IMP2 strongly promotes IGF action, by binding and stabilizing the mRNA encoding the DNA binding protein HMGA1, a known oncogene. HMGA1 suppresses the abundance of IGF binding protein 2/IGFBP2 and Grb14, inhibitors of IGF action. IMP2 stabilization of HMGA1 mRNA plus IMP2 stimulated IGF2 production synergistically drive cancer cell proliferation and account for IMP2's tumor promoting action. IMP2's ability to promote proliferation and IGF action requires IMP2 phosphorylation by mTOR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin‐like growth factor 2 expression in prostate cancer is regulated by promoter‐specific methylation

Deregulation of the insulin-like growth factor (IGF) axis and dysbalance of components of the IGF system as potential therapeutic targets have been described in different tumor types. IGF2 is a major embryonic growth factor and an important activator of IGF signaling. It is regulated by imprinting in a development- and tissue-dependent manner and has been implicated in a broad range of malignan...

متن کامل

CRISPR Cas9-guided chromatin immunoprecipitation identifies miR483 as an epigenetic modulator of IGF2 imprinting in tumors

The normally imprinted insulin-like growth factor II (IGF2) gene is aberrantly upregulated in a variety of human malignancies, yet the mechanisms underlying this dysregulation are still poorly defined. In this report, we used a CRISPR Cas9-guided chromatin immunoprecipitation assay to characterize the molecular components that participate in the control of IGF2 gene expression in human tumor ce...

متن کامل

HMGA1P7-pseudogene regulates H19 and Igf2 expression by a competitive endogenous RNA mechanism

Recent studies have revealed that pseudogene transcripts can function as competing endogenous RNAs, and thereby can also contribute to cancer when dysregulated. We have recently identified two pseudogenes, HMGA1P6 and HMGA1P7 for the HMGA1 gene whose overexpression has a critical role in cancer progression. These pseudogenes work as competitive endogenous RNA decoys for HMGA1 and other cancer r...

متن کامل

Competitive Binding Between Id1 and E2F1 to Cdc20 Regulates E2F1 Degradation and Thymidylate Synthase Expression to Promote Esophageal Cancer Chemoresistance.

PURPOSE Chemoresistance is a major obstacle in cancer therapy. We found that fluorouracil (5-FU)-resistant esophageal squamous cell carcinoma cell lines, established through exposure to increasing concentrations of 5-FU, showed upregulation of Id1, IGF2, and E2F1. We hypothesized that these genes may play an important role in cancer chemoresistance. EXPERIMENTAL DESIGN In vitro and in vivo fu...

متن کامل

Epigenetic alterations of the Igf2 promoter and the effect of miR-483-5p on its target gene expression in esophageal squamous cell carcinoma

Esophageal squamous cell carcinoma (ESCC) is one of the most widespread malignancies in China. MicroRNAs (miRNAs/miRs) are endogenous evolutionarily‑conserved small non‑coding RNAs that are able to regulate ESCC formation and deterioration by negatively regulating specific target genes. In the present study, the expression levels of miR‑483‑5p and its associated mRNAs were measured by quantitat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017